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ABSTRACT

This paper presents a theoretical method for constructing dimension-
less interaction curves for members subjected to combined tension and
bending loads that produce inelastic strains, and presents experimentalresults which verify the theory. Each interaction curve represents the
total range of the ratios of axial load to bending moment which will cause
inelastic strains to extend to a given depth in the member. Experimental
interaction curves were obtained from eccentrically loaded tension members
of rectangular cross sections made from three strain hardening materials,
namely, annealed rail steel and aluminum alloys 24s-T4 and 75S-T6. Good
agreement was found between theory and experiment. In order to design a
member subjected to combined axial and bending loads by use of the inter-
action curves, the lateral deflection of the member must be estimated.
Three orders of approximation for the lateral deflection of eccentrically
loaded tension members are presented. The problem of combined bending and
axial compressive loads is discussed and research based on the methods of
analysis developed in this investigation is suggested for solving the
buckling load of a member subjected to combined bending and axial com-
pressive loads. Some illustrative problems are solved in the Appendix which
show how the results of this investigation may be used.
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INTRODUCTION

Members of some machines and structures must be designed to resist

loads where the weight of the members must be as low as possible. One way

of obtaining such members is the use of light weight metals such as alloys

of aluminum and magnesium. Another way has been by the improvement in the

design of the cross-sections of the member by using sections made of thin

sheets reinforced with stringers. Another important idea used in designing

such a member is to take into account the increased resistance to loads by

the member when relatively small inelastic strains are allowed to occur in

the most strained fibers. This method requires the use of a relationship

between the loads and the stresses or strains in the member when the strains

exceed the elastic limit strain of the material. This method is important

because it has been found that many members can vesist loads that greatly

exceed the maximum elastic load for the member. The maximum elastic load

is the load at which the most strained fiber of the member is on the thres-

hold of inelastic strain. For a member loaded in such a way that it has a

stress gradient, the load necessary to produce a small amount of inelastic

deformation of the most strained fibers may be appreciably larger than the

maximum elastic load, especially if the stress gradient is steep at these

fibers.

This investigation was undertaken to determine the influence of rela-

tively small inelastic deformation on the loads carried by a member subjected

to both an axial load P and a bending movement M. Small inelastic strains

are here defined as those of the same order of magnitude as the elastic

limit strain of thematerial. Some investigations have been made of such

members, mostly of aircraft structural elements consisting of cross-sections

made of thin sheets stiffened by stringers. There are many other types of

WADC TE 52-S9 Pt 1 1



applications in which a member must be designed to carry combined bending

and axial loads such as occurs when an eccentric load is applied to a ten-

sion member or to a compression member. For members loaded in compression,

the failure of the member may be by elastic buckling if the member is rela-

tively long, or by inelastic buckling if the member is relatively shorto

The behavior of a member that fails by inelastic buckling is complicated.

Therefore, in this investigation the load P is a tensile load so that buck-

ling failure does not occur. It was felt that the results of this investi-

gation would give a better understanding of inelastic behavior of a member

subjected to combined loads and lead to further research in the problem of

inelastic buckling*

The failure of members tested in this investigation was by excessive

inelastic deformation. None of the members was loaded to fracture, because

of the fact that each member tested withstood inelastic strains over a

major portion of its length and depth at the maximum loads used. It was,

therefore, considered that each member failed by general yielding. As will

be shown later, this general yielding was assumed to take place when inelastic

strains had occurred at the most highly stressed cross-section to a certain

arbitrarily chosen depth of the section.

When a member is subjected to a combination of two types of loads,

such as P and M as used in this investigation, two relationshiTs between

the loads are necessary for the design of the member. The first relation-

ship to be considered is that of the interaction curve which expresses the

total range of values of load P and moment M which will result in a given

depth of yielding. The second relationship expresses the relation between

P and M for a given loading of a member so that a point on the interaction

curve can be determined.

WADC TR 52-89 Pt 1 2



Method of Obtaining Interaction Curves

Inelastic strains imperndin If no elastic strain can be allowed in

a member similar to those shcmWn in Fit. 6, the mxim,'un stress a in the ex-

treme fibers can be written in terms of P and M by using the principle of

superposition. This expression is

=P+Mc

A I

in which A is the cross-section area, a is the distance from the centroid to

the extreme fiber, and I is the moment of inertia of the area with respect

to the centroidal axis. If the value of a is equal to the elastic limit a0

of the material the foregoing equation states the condition that inelastic

strain is impending or is on the verge of occurring in the most stressed

fibers. The equation is transformed by dividing both sides by c and setting
e /

Pe a a eA and Me a Ie/c where Pe and Me are the elastic limit loads for the

member for axial tension only and pure bending only, respectively,

*-P + gl (1
P Me e

Equation (1) is represented by the line DC in Fig. 4 in which ordinates rep-

resent values of V/M and abscissas P/P. The curve DC (straight line in

this case) represents corresponding pairs of values of M and P which will

cause the member to be on the verge of starting to strain inelastically and

is called an interaction curve. Equation (1) constitutes a relationship be-

tween P and M for impending inelastic strains, but an additional relationship

between P and M must be found for a given member subjected to a combination

of bending and axial loads. For the case considered here, namely, eccentric

tensile loads, this additional equation is

M P(eo -A) (2)

WADC TR 52-99 Pt 1 3



in which e0 (See Fig. 6) is the initial eccentricity andL is the deflection

of the member at its middle section. For impending inelastic strains A is

equal to ,. , In order to determine the pair of values of P and M that

correspond to impending inelastic strain, we must determine* i and thene

solve Eq. (1) and (2) simxltaneously. If e° is relatively large, the ef-

fect of /•e is usually neglected, that is, Eq. (2) is written M - Pe 0 * An

indefinitely large value of e corresponds to the case of pure bending.

Small Inelastic Strain Allowed. The loads M and P, as given by the

foregoing equations, will have to be increased somewhat in order to cause

inelastic strains to occur at the extreme fiber and at other nearby fibers in

the most highly stressed cross-section. Eventually, if the loads M and P

are increased sufficiently, the fibers at all depths in the beam at the most

highly stressed cross-section will become inelastically strained; however,

this condition will result in an inelastic deformation which can no longer

be considered small and the member will have failed by general yielding.

Therefore, some compromise loading between the loads which result in failure

by general yielding and the loads that cause inelastic strains to be impend-

ing in the extreme fiber is desirable. In this paper the loads chosen are

those combinations of M and P that cause inelastic strains to occur over

one-half the depth of the most highly stressed cross-section. This choice

of proportions of area covered by elastically strained as compared with in-

elastically deformed fibers is made because it leaves half of the section

elastic which insures that the deformation of the member is of the same order

of magnitude as that which occurs under the elastic limit loads when inelastic

strains are impending. Furthermore, this manner of describing the extent

+See Appendix to this paper. Also see Airplane Structures, A. S. Niles and
J. S. Newell, John Wiley and Sons, Vol. II, 3rd Ed., 1943, p. 67.
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and magnitude of inelastic strains is more convenient to use than methods

which make use of magnitude of the maximum stress or strain. Also it more

closely describes the approach condition of the member to failure by general

yielding.

The interaction curve for the condition described in the preceding

paragraphs namely, the loads corresponding to inelastic strains in one'half

the depth of the most highly stressed section cannot be found by use of the

principle of superposition as was Eq. (1), and is found here by plctting a

few points. The method used is to assume that at this cross-section an arbi-

trary distribution of the strains is chosen which makes half the depth in-

elastic and half elastic as previously described. The problem is to deter-

mine what load P and bending moment M corresponds to the assumed strain

distribution (see Fig. 2b and c). An example is now given which shows how

the interaction curve is drawn. ABC in Fig. 1 represents the interaction

curve for inelastic strain to one-half depth of the cross-section of a member

of rectangular cross-section made of a material having equal yield points

a in tension and compression, that is, the slope a (Fig. 2) of the stresse

strain curve is zero when the stress becomes a e The ordinate of point A

which corresponds to pure bending is obtained by finding the moment M =foydA.

In this integral y is measured from the centroid and the distribution of the

stress a on the beam cross-section is as shown by the figure near the point

A. In this case inelastic strains are assumed to occur at the top and

bottom of the beam to one-fourth its depth, that is, a total of one-half.

The moment is divided by Me e aeI/c - a be 2e . The abscissa of A is zero

since P fodA is zero for this stress distribution. Similarly, the

ordinate of B is found by determining M from the integral M -f oydA in

which the stress distribution is shown in the figure near B and y is again

measured from the centroidal axis. In this case all inelastic strains are

WADO TB 52-89 Pt 1 5



assumed to occur in the upper one-half of the cross-section and inelastic

strains in lower extreme fiber are impending. This value of M is equal to

2 ab2 for the rectangular section and, since M - abe 2e , the ratio

'/M0 - 1 is the ordinate of B. The abscissa of B is found by determing the

resultant force P - fadA for the stress distribution on the section. This

value is P a a be for the rectangular section and therefore P/Pe - 1/2. Ite

is proved later that from B to C the curve is always a straight line. Be-

cause of this fact the location of the point B is very important. Other

points between A and B can be found in a manner similar to that used in

locating A and B. When a is not zero (see Fig. 2a) the interaction curve

can be drawn in exactly the same way that ABC was drawn. In Figt 1 the

curves A'''B"''C, A"B"C and A'B'C' represent the interaction curve for mate-

rials in which a - a3 - a2 is 0.2, 0.6 and 1.0, respectively. It will be

shown later that curves for values of a between 0 and 1, such as A'''B'"C

and A"B"C, can be drawn by linear interpolation between ABC(a - 0) and

A'B'C(a - 1).

An interaction curve such as ABC in Fig. 1 represents one relationship

between P and M. Equation (2), called the moment-load relationship in this

paper, is an additional relationship which can be used to solve for the de-

sired values of P and M for a given problem. But in order to use Eq. (2),

the value of must be known. A value of the deflectionLs can be deter-

mined approximately by making use of the assumed depth of inelastic strain

in the member. Simple procedures are presented later to give first, second,

and third approximations to the deflection of a member loaded eccentrically

in tension. The shape of an interaction curve in the inelastic range is a

function of the cross-section+ of the member (Fig. 5), the shape of the

+For a discussion of interaction curves for various types of cross-sections
see F. B. Seely and James 0. Smith, "Advanced Mechanics of Materials,"

Second Edition, John Wiley and Sons, 1952.
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stress-strain diagram of the material (Fig. 1), and the depth of yielding

(Fig. 4).

Several assumptions have been made in constructing these interaction

curves. Th.e tension and compression stress-strain diagrams are assumed to

be represented by two straight lines as indicated in Fig. 2a, Plane sections

are assumed to remain plane. It is further assumed that a plane given by

the action line of the load and the centroidal axis of the member is a plans

of symmetry of the cross-section.

Proof that BC is straight line. The proof of the linearity of line

BC and the location of point B will now be given for a beam of rather gen-

eral cross sections such as that shown in Fig. 2d aid for a general case.

The beam is subjected to a load P and moment M such that the depth of yield-

ing is a and the maximum compressive stress q2 is less than a (see Fig.-- 02

2a and 2b). The equations of equilibrium for the stress distribution are

P- adA ; M- fydA (3)

where y is measured from the centroidal axis. The stresses in the elastic

and inelastic region are, respectively

h(ot -a ?C r ( L ) a e 3 . + " a ( 2 + y ) + Q 0 2

in which a2 is negative for compression. If these stresses are put in Eq.

(3), the load and moment in dimensionless form are

P "A8 A AA
1(A + ac÷ A + At e . + (1-a) A (4)

WADC TR 52-S9 Pt 1 7



M 1 03L. PGO1 ~ ciPoQ o1Q

a elII

where P a aA Me o- - (negative for a2 compression), and
a*el

Q is first moment of the area about centroidal axis. The subscripts e and

p on A, Qj and I refer to the elastic and inelastic (plastic) areas of the

cross-section.

For a given cross-sectionj a given depth of inelastic deformation, and

a given material, all the terms on the right side of either Eq. (4) or (5)

are constant except p. Since P and M are both linear in 8, the line BC

is a straight line. If a2 is made equal to - a02 $ the yield stress in

compression, Eq. (4) and (5) can be used to locate the point on the inter-

action curve corresponding to point B in Fig. 1.

h
For the special case of a rectangular cross-section with A -

O = a eand p- 1 Eq. (4) and (5) become

P + a

(6)
M 1a

If a is set equal to zero in Eq. (6), point B in Fig. 1 is obtained. Point

B' is obtained if a is equal to unity. The load P and the moment M vary

linearly with a so that the point corresponding to point B for a material

with a - 0 must lie on the straight line BB'. It should be observed that

the general expression for P and M, Eq. (4) and (5), are also linear in a.

The point on the interaction curve corresponding to B in Fig. 1 for any

value of a is obtained by interpolation between B and B', that is, by laying

off a distance along BB' from B equal to aEB'.

For any point on the interaction curve from A to B inelastic strains

WADO TR 52-59 Pt 1 8



occur on both sides of the member. In the more general case the location

of any point on this curve is a function of both a3 and aj, the strain

hardening factors in tension and compression. If a3 , as " a, the location

of any point from A to B can be computed for a - 0 and a - 1 and the loca-

tion of the point for any a can be determined by interpolation in a manner

similar to that discussed above for point B. The curves shown in Fig. 1

illustrate the effect of a on the interaction curves for 1/2 depth of yield-

ing in a member with rectangular cross-section.

The calculation of a point on the interaction curve for the more gen-

eral case can be carried out from diagrams similar to that shown in Fig. 3.

Assume a strain distribution, Fig. 3a, which will result in a given depth

of yielding. From the strain distributions and the known stress-strain

diagrams, Fig. 2a, the stress distribution, Fig. 3b, can be obtained. The

load P and the moment M can then be calculated for the given stress distribu-

tion.

The effect of depth of yielding on the interaction curves is shown in

Fig. 4 for a member with rectangular cross-section and made of a material

with identical properties in tension and compression and a - 0. The effect

of cross-section on the interaction curves is indicated in Fig. 5 by the

rectangular, circular, and T-cross-sections. The material is the same as

for the curves shown in Fig. 4, and the depth of yielding is 1/2 the depth

of the member.

For a member of given length, cross-section, and initial eccentricity,

the load or moment on the member necessary to produce a given depth of yield-

ing cannot be determined unless the deflection of the member for these con-

ditions is known. If the deflection is known, the final eccentricity can be

calculated and the relation between moment and load obtained. In case the

axial eccentric load is a tension load, simple first, second, and third

WADC TR 52-89 Pt 1 9



approximations to the moment-load curves are piven later in this paper so

that a safe approximation to the load can be obtained. These procedures

are presented in the discussion of results.

Materials and Method of Testing

The materials used in the experimental investigations were annealed

high carbon rail steel and aluminum alloys 24S-T4 and 75S-T6. Nine eccentri-

cally loaded tension members were tested, three for each material. The rail

steel test members were machined from the base of an annealed railroad rail*

The aluminum test members were machined from six pieces of as-rolled bar

stock. All machined surfaces were finish ground. The overall dimensions

of the test members are shown in Fig. 6. The numerical values of the cross-

sectional dimensions and the original eccentricity, ea, are listed in Table 1.

The test members were all tested in a hydraulic type, Amsler testing

machine having load ranges of 0 to 10,000, 0 to 20,000, 0 to 50,000, and 0

te 100,000 lb. The load was applied by the fixtures shown in Fig. 7. The

two yokes were attached to the heads of the testing machine. The load vas

transmitted from the yoke through 3/8 in. diameter hardened steel balls to

the tapered pin and from the pin to the test member. The purpose of the

taper on the pin was to permit lateral adjustment of the test member to

minimize lateral bending.

Strains in the rail steel members were measured by one inch, Type A-ll,

SR-4, electrical strain gages at the locations shown in Fig. 6. These gages

were not found to be reliable for the large tensile strains (up to 0.015 in.

per in.) in the aluminum members; therefore, a two inch gage length mechani-

cal extensometer, with one division on the dial equaling 0.0001 in. per in.

strain, was used to measure the strains in the fibers near the most strained

fibers. The data from the SR-4 gage was used for small strains and the

WADO TR 52-89 Pt 1 10



Table I. Original Eccentricities and

Original Cross-Sectional Dimensions of Test Members

b d eo

Material Test Breadth of Depth of Otiginal
Number Section Section Eccentricity

in. in. in.

Annealed Rail Steel 1 0.753 1.249 1.147
2 0.753 1.249 0.465
3 0.753 1.249 0.282

Aluminum Alloy 24S-T4 1 0.751 1.252 1.194
2 0.751 1.252 0.503
3 0.751 1.252 0.304

Aluminum Alloy 75S-T6 1 0.747 1.252 1.194
2 0.747 1.252 0.504
3 0.501 1.252 0.304

WADC TR 52-89 Pt 1 11



extensometer was used for large strains. The deflections of the members

were measured by a 1/l0000 in. dial by the arrangement shown in Fig. 7.

In testing, increments of load were applied and corresponding strains

and deflections measured. In the inelastic range the strain and deflection

readings indicated that the inelastio deformation continued with time. In

such cases an arbitrary time interval of 5 to 15 minutes was allowed for

indicators to become reasonably steady before readings were taken. During

this interval a fairly successful attempt was made to hold the load at a

constant value.

Properties of Materials

Mechanical properties of the materials were determined from stendard

tension and compression specimens cut from the bars from which the moment-

load test members were made. They were selected so that the center lines

of the tension and compression specimens coincided as nearly as possible

with the most strained tension and compression fibers of the moment-load

test members. Three tensile specimens were tested for the annealed rail

steel, one near most strained fibers of each of the three test members.

From past experience with this material, it was assumed to have the same

properties in tension and compression. For each aluminum alloy, three ten-

sion and two compression specimens were tested. The stress-strain diagrams

of the materials are shown in Fig. 8 and 9. Each diagram is shown approxi-

mated by two straight lines. Mechanical properties were taken from these

straight lines and are listed in Table II.

Discussion of Results

For each of the nine eccentrically loaded tension members, the strain

distributions across the depth of the member and the deflections were ob-

tained at increasing loads. The strains were measured at the locations shown

WADC TE 52-89 Pt 1 12



Table I1. Mechanical Properties of Materials

R Tension Compression

Material 106 psi. aea 02
psi. 3. psi* a2

Rail Steel
Test Member No. 1 30.9 38,600 0.082
Test Member No. 2 30.9 37,000 0.077
Test Member No. 3 30.9 36,000 0.077

24S-T4 10.9 49.,600 0.035 40,800 o.123

75S-T6 10.4 72,000 0.024 70,800 0.100

WADOTR 52-99 Pt 1 13



ii1 Fig. 6. In the case of the six aluminum specimens, the strains in the

most stressed tension fibers for elastic conditions were measured by the

SR-4 gages. Thereafter these strains were obtained by extrapolation using

the strains as determined by the 2 inch extensometer.

The load P on each member was weighed by the testing machine. The

moment M corresponding to P was calculated from the load P, the initial

eccentricity e* and the measured deflection. Each load P and moment M

was reduced to dimensionless form by dividirg by the respective quantities

Pe - aeA and Me "---l- where a is the yifeld stress in tension as listed

in Table II. Corresponding values of the dimensionless ratios of load and

moment are plotted for each of the test specimens in Fig. 10, 11 and 12 for

the annealed rail steel, aluminum alloy 24S-T4, and aluminum alloy 75S-TG,

respectively. In each of these figures are shown theoretical interaction

curves for the loads P and M which, when acting together, will cause in-

elastic strains of fibers to zero depth, one-quarter depth, and one-half

depth, respectively, across the section of the member. For each of the test

members a test point was determined for each of the interaction curves and

each is shown as a circle with a dot in the center. The test points indicate

that the largest error in the calculation of either the moment or load was

less than 5 0/o.

Approximate Methods of Determining the Deflection L in Eq. (2). In

the following paragraphs three approximations of the moment-load curves will

be presented for obtaining conservative values of the load necessary to pro-

duce a given depth of inelastic strain. In each case the actual deflection

is larger than that computed, but the use of an interaction curve such as

ABC in Fig. 1 with Eq. (2), in which either of the values of / is sub-

stituted, for computing P for a member such as in Fig. 6 will give a

WADC TR 52-89 Pt 1 & 14



Comservative value of P, that is, the value of P will be less than that

which will be required to cause the actual assumed conditions in the member.

This fact will be discussed under the next sideheading.

For the first approximation of the moment-load curve, (Eq. (2)) assume

that the member does not deflect so that the relation between load and

moment can be calculated from the initial eccentricity. The radial solid

lines shown in Fig. 10, 11, and 12 represent the first approximation to the

moment-load curves*

For the second approximation of the moment-load curve, we calculate

the maximum elastic deflection A& e (See Appendix) corresponding te a stress

of ael or a.2 in the extreme fiber, depending on whether yielding begins on

the tension or compression side. The relation between load and moment based

on the eccentricity corrected for elastic deflection are shown as dashed

lines in Fig. 10, 11 and 12.

A third approximation of the moment-load curves is easily obtained

for any given depth of yielding. For the special case of pure bending of a

beam whose cross-section has two planes of symmetry and made of a material

with identical stress-strain diagrams in tension and compression, the deflec-

tion of the beam is obtained in terms of the maximum elastic deflection

ýe* From geometrical considerations it can easily be shown thatp for

these conditions,

1 (7)

where e is the maximum elastic deflection corresponding to an extreme

tensile fiber stress of ae3 and 11 is the total depth of yielding, including

yielding on both sides when it occurs, divided by the depth of the beam.

For 4) equal to 1/4 or 1/2 Eq. (7) gives deflection of 4 A and 2,.

respectively.
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The computation by the more exact method of the deflection after in-

elastic strains have occurred requires an enormous amount of work. The

third approximation of the moment-load curves is also based on a deflection

which is smaller than the actual deflection. This is explained as follows.

It is assumed that the lateral deflection of the member is proportional to

the algebraic difference of the strains in the most strained tension and com-

pression fibers of the member. Consider as a special case an eccentrically

loaded member in which the strain in the most strained compression fibers

does not change as inelastic deformation occurs; the deflection of this mem-

ber is given by Eq. (7). This special case does not occur except perhaps

for small eccentricities accompanied by large depth of yielding, and hence

the strain on the compression side increases as yielding takes place so that

the algebraic difference in strain is larger than that necessary for Eq. (7)

to be valid. Hence, in general, the actual lateral deflection will be larger

than that given by Eq. (7). The dotted lines in Fig. 10, 11 and 12 were ob-

tained by using Eq. (7), in which Y was made equal to 1/2.

Error due to use of Approximate L• . The load P obtained by using

these lines which represent the first, second, and third approximation are

all smaller than the actual value of P and the value of M is larger than its

actual value as shown by the larger circle with black dot in Fig. 10, 11 and

12.

It is sometimes desirable to use in Eq. (2) an approximate value of/A

which is slightly larger than the actual value. This procedure would lead

to the computation of values of P and M that are, respectively, slightly

larger and slightly smaller than the values that will cause the actual in-

elastic strained condition of the member that is assumed. The following

method is used for determining such a value of A .

From the calculations for the maximum elastic load, the neutral axis
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and the strains e and - e2 for the most strained tension and compression

fibers can be determined; the strains will be e3 and -ee2 if impending

yielding is on the compression side. By assuming that the neutral axis does

not shift, the strains el and - e2 in the most strained fibers can be deter-

mined for a Given depth of yielding. If the deflection is assumed to be

proportional to the algabraic difference of the strains, the deflection can

be computed by the expression

•el- ('C2) •

Se : -e2) 460 (8)

.for the case in which yielding initiates on the tension side. This value for

the deflection will be larger than the actual deflection since the neutral

axis shifts toward the compression side of the member thus reducing both el

and e2 for a given depth of yielding.

Axial Comprecsion and Bending Loads. The results of the investigation

reported here do not usually apply to a member subjected to combined bending

and axial loads if the axial load is a compressive load, The reason for

this fact is described as follows. When the axial load is a tensile load

its effect is to reduce the deflection due to bending and it thereby tends

to reduce the maximum bending moment. This is shown by the fact that in

Fig. 10, 11 and 12, where the axial load is a tensile load, the test data

representing values of maximum bending moment M versus the axial load P lie

in curves which are concave downward and to the right. On the other hand,

when the axial load is a compressive load its effect is to increase the de-

flection due to bending and it thereby tends to increase the maximum bending

moment. This is shown in Fig. 13 where some assumed moment-load curves OBD

and OFG resulting from compressive axial loads are shown (no tests were made

using compressive axial loads; this important problem requires further
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research). In Fig. 13 curve OAC represents an actual test of a member of

75S-T6 under combined bending and axial tensile loads and this curve shows

that the tensile axial load reduces the deflection so much that the bending

moment reaches a maximum as shown at A. On the other hand, the hypothetical

curve OBD for the same member subjected to combined bending and axial com-

pressive loads is concave upward and to the left, showing that the compress-

ive axial load tends to increase the bending moment. Curve OBD shows, by

the vertical tangent at B, that, when the axial load is compressive, the

axial load reaches a maximum value, instead of the bending moment. This fact

means that when the axial compressive load represented by the abscissa of the

point B is applied to this member it becomes unstable and will collapse by

buckling, because points on the curve above B show that, when the load at

B Is reached, smaller axial compressive loads than at B are capable of pro-

ducing greater bending moments.

It should be noted that the curve OBD does not intersect the curve

representing pairs of values of M and P that correspond to 1/2 depth of the

section being inelastically strained, and hence the results of the analysis

in this report do not apply to such members. However, if the member is sub-

jected to a compressive axial load having only a small eccentricity,the

moment-load curve may be represented by a curve such as OFG which does inter-

sect the curve representing 1/2 depth of inelastic strain before the buckling

load at F is reached. It is of interest here to note that the points B and

F will always be above the line representing the beginning of yielding. This

means that the primary buckling (collapse) load for a member subjected to

combined bending and axial compressive loads corresponds to a combination

of bending moment and axial loads that will produce some inelastic strain

in the most highly stressed cross-section.

A procedure for oonstrudting the moment-load curves for memoers loaded in
compression has been developed by W. D. Jordan but has not as yet been
published.
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Additional research is needed for solving the problem of combined bend-

ing and axial compressive loads. It is believed that the method of attack

used in this investigation can be used for this purpose.

Summary and Conclusions

A method is presented for constructing dimensionless interaction curves

for any members of any cross-section having one axis of symmetry and sub-

jected to eccentric axial loads in the plane of symmetry. The theoretical

interaction curves for members of rectangular cross-section were compared

with experimental data for eccentrically loaded tension members of annealed

rail steel and aluminum alloys 24S-T4 and 75S-T6. Three specimens of each

material were tested to give three points on each interaction curve. Four

approximations to the lateral deflection of a member are presented so that

a satisfactory approximation of the loads for a given depth of yielding can

be computed. The results presented in this paper are believed to be sufficient

to justify the following conclusions:

1. The interaction curve is constructed for a given member subjected

to a combination of axial load and bending moment by locating two or more

points on the curve. Each point is located by computing the values of P and

M for the stress distribution that is assumed to occur for the given depth

of inelastic strain. Because of the ease of construction and use, the inter-

pgction curve was derived to give the range of corresponding values of moment

and load which would produce a given depth of inelastic strain. The tension

and compression stress-strain curves for the material are approximated by two

straight lines (see Fig. 8 and 9).

2. The results obtained from tests of eccentrically loaded rectangular

tension members of annealed rail steel and aluminum alloys 24S-T4 and

75S-T6 gave good correlation between theoretical and experimental interaction
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curves.

3. In designing an eccentrically loaded tension member for a given

depth of yieldingj the lateral deflection in Eq. (2) for the member must be

known so that the relation between axial load and bending moment can be de-

termined. Four approximations to the moment-load curve are presented. All

approximations give values of P and M that are not greatly different from

the values.which correspond to the actual conditions assumed in the member.

4. In the Appendix to this report, illustrative examples show that

for beams of rectangular cross-section subjected to combined axial tension

and bending loads more than 50 percent increase in load at the threshold of

the occurrence of inelastic strain in the most highly stressed fibers of the

beam is required to cause inelastic strains in the most stressed cross-

section to occur to a depth of 1/2 the cross-section.

5. The results of this investigation are not generally applicable to

such members as described in the foregoing conclusions when the axial load is

a compressive force. This problem is one of unstable equilibrium because

the axial load reaches a maximum and at this load the member will collapse

due to inelastic buckling. It is concluded that further reseairch, in which

moment-load curves, such as OBD and OFG in Fig. 13, must be used, will be re-

quired to s lve this problem. The method of analysis developed in this report

will be of great value in analyzing the behavior of a member subjected to

combined bending and axial compressive load.
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APPENDIX I

ILLUSTRATIONS SHOWING USE OF

INTERACTION CURVES

Introduction--In making use of Eq. 2 as one of the relationships be-

tween the combined loads M and P the deflection 6 is sometimes neglected,

that is, A is set equal to zero. When more accurate results are desired a

value of 6 is given in terms of the maximum deflection & e and ( by Eq. 7,

where i, is the deflection of the member when the most strained fiber ate

the most highly stressed cross-section is on the threshold of becoming inelas-

tically strained, and 'V' represents the ratio of the total depth of the inelas-

tic strain at this section to the total depth of the cross-section. The

following example illustrates the method of computing the values of the de-

flection and bending moment in a member subjected to combined axial and bend-

ing loads and of making use of the interaction curves in this report to solve

for the loads on such a member that correspond to a given depth of inelastic

strain in the most highly strained cross section of the member.

Computation of Maximum Deflection and Maximum Moment---Fig. 14 repre-

sents a beam of length i , simply supported at its ends, that is su.bjected to

the following loads: a concentrated load W at its mid-point, b;n'ing momients

M, at its ends and an axial load P. The deflection of the beeLm at the dis-

tance x from the left end is y. The bending moment at any section in the

left one-half of the beam is

Wx
M - M, + y- 9- (9)

If the value of M from Eq. 9 is substituted in the equation EI d M it
dx2

becomes

d El. P 
0 W)

CT 5 -a9- x P12
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The solution of Eq. 10 is

y X CsinhPx+ C2 cosh'\J x - , + x (11)

The constants C, and C2 are determined from the fact that y - 0 when

x - 0 and that xy 0 when xin. When these values of C3 and C2 are found

and x is set equal to fthe maximum deflection is found to be

P + •- - -)+W (12)I - W I Pý l _ a n hc o s h •

Furthermore if Eq. (11) is differentiated twice with respect to x and if

both sides are then multiplied by BI the resulting expression represents the

bending moment at any section. The maximum bending moment usually occurs at

f , depending upon the relative values of the loads, and is found from

the above to be

ma 7 PE 1 os (13)

Equation (10), (11), (12), and (13) are valid only so long as the most

strained fibers in the beam are elastically strained.

ILLUSTRATIVE PROBLEMS

Problem 1. Let the beam in Fig. 14 be made of aluminum allvy 75S-T6 (see

Table II for properties) and have a rectangular cross-section whose depth is

2c - 1.25 in. and width is b - 0.75 in. The length is 8.25 in. Letthe

load W - 0 and the moment ?1 - Pe . This beam is that of Fig. 6. Let e•

0.3 in. (a) Compute the value of the load P that will cause the most highly

stressed fiber in the most highly stressed cross-section (section of maximum

bending moment) in the beam to be on the threshold of inelastic strain and

compute the maximum deflection/L for this load. (b) Compute the value of
e

the load P that will cause inelastic strains to occur over one-half the depth
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of the most highly stressed cross-section, that is, the section where the

maximum banding moment occurs.

Solution, (a) Load for Inelastic Strain Impending. Mhen W is set equal to

zero and 31 - O.3P, Eq. (13) is

0.3P (14)

Cosh I V ..

We must now solve Eq. (1) and (14) simultaneously for values of M and P. It

is more convenient to do this if Eq. (14) is divided by Me so that it con-

M P
a a

results in the following equation

0.9 p
, (14a)

Ie C cosh 2- 1 -

c Va-

The following equation results when Eq. (1) is subtracted from Eq. (14a).

0.9 -
0 . e -P1 (15)

c cosh -

The values c 0.625, E " 10,900,000 lb/in 2 and ae- 72000 lb/ing are sub-

P
stituted in Eq. (15) which is solved by trial and error for - The result

P e
is that 0.45 and - - 0.55 and since P 2bcae x 0.75 x 0.625 x

e e
72000 - 67500 lb, the load is P 3 30400 lb. These computed values represent

the actual values found in the test. The deflection & is obtained from
e

Eq. (12) by the substitution of this value of P with the other quantities

given in this problem. The result is
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t e3 x 30400o - 0.05 in.

(b) Load for Inelastic Strain to Ohe-Half Depth. For this solution we use

Eq. (2) and the interaction curve marked 1/2 depth in Fig. 12. Equation (2)

is
M- P(e 0 -L\) (2)

The value of Lto be used in Eq. (2) is obtained from Eq. (7) and is

T(7)

and by making Le - 0.05 in. and y- 1/2, we find

* 0.10 in.

Therefore, from Eq. (2)

M - P(o.3 - 0.10) a 0.ZOP

We transform this latter equation into dimensionless ratios by dividing both

sides by Me so that

M _ 0.2P1 0.2P 0.6 P P
S- - I -- -e 0.96

e e e e e
0

This equation is represented by the dotted line OB in Fig. 12. The coordinates

of the point Bp which are

- . 0.66 and P = 0.69,
Me %

represent the desired values of P and M. Therefore

P - 0.69 P* 0.69 x 67500 w 46,500 lb.

The coordinates of the black centered circle at C represent the actual values

determined from the test which were - 0.60 and P 0.71, that is, the test

value of P * 48,000 lb.

A comparison of the 46,500 lb. with 30,400 lb. shows that a 53 o/p in-

crease in the load at the threshold of occurrence of inelastic strain is re-

quired to cause inelastic strains in the most stressed cross-section to occur
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to a depth of 1/2 the cross-section. The actual value of this load as found

by tests was 58 0/o higher.

Problem 2. Solve Problem 1 with the load W - - P, instead of W - 0. The

Wnegative sign means that W acts downward and the reactions E downward, that

is, in the reverse sense from that in Fig. 14. All other loads are the same

and the dimensions and material are the same as in Prob,.l.

Solution. (a) Load for Inelastic Strain Impending. In Eq. (14) we set

W a - P and MI = NeOD We then transform the equation by dividing both sides

by Me to g•et - on the left side and by adjusting the quantities on the
Ie P

right side and under the radicals, etc., so that the term - appears where P
0

occurs. When this is done, Eq. 13 becomes

P
3e fE aP

M. 0 e 3 E P tanh e ) (15)Me c T- ee e e a

cosh ( I e r)

Eq. I is subtracted from the Eq. 15 with the following result

F 3e I CE"e 1 C .. ... 3- -- t e 4 02 E p

cosh( r )
f4 ~E

C e

The values of e, 0 , 0a e and E are substituted in this equation

from this problem and the equation is solved by trial and error for the value
F p

of - which is found to be-- - 0.083 and the corresponding values of
MPe Pe

S- 0.917. Thus the load P - 0.083 x 67500 - 5600 lb.
e

The maximum elastic deflection Ae occurring at the threshold of inelas-

tic strain in the beam is found by substituting P - 5600 into Eq. 12 with the

result that & 0.06 in.
e
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(b) Load for Inelastic Strain to One-Half Depth. For this solution we re-

write Eq. 2 to include the bending moment at the most stressed section,

namely the mid-point due to the load W - -P. This equation is Eq. 9 in whiah

y 4 , x and M, aPe.
m a x 0

M- e 0 -P A + " P(e(

As in problem 1, we substitute for,& in Eq. 16 a value of 2 Ie - 0.12 in.

Thus Eq. 16, with these quantities substituted, becomes

M - P(O.3 - 0.12 + 2.06) - 2.24P

By dividing both sides of the latter equation by Me it becomes

M 2.24 P -2.24 P 2.24 10.7P

S•i• C

In Fig. 12 this latter equation represents a radial line which intersects the

interaction curve for 1/2 depth of inelastic strain at a point whose coordi-

nates are P 0.125 and 1,37. Therefore P - 0.125? 8700 1b.A coin-
0Me0

parison of 8700 lb. with 5600 lb. shows a 55 percent increase in the load at

the threshold of occurrence of inelastic strain is required to cause inelastic

strains in the most stressed cross-section to occur to a depth of one-half

the cross-section.
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FIG. 2 DISTRIBUTION OF STRESS IN A STRAIGHT MEMBER OF

SYMMETRICAL GROSS-SECTION WHICH IS SUBJECTED TO AXIAL

TENSION AND BENDING LOADS.
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FIG. 9 COMPOSITE TENSION AND COMPRESSION STRESS-STRAIN DIAGRAMS
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FIG. 10 COMPARISON OF EXPERIMENTAL AND THEORETICAL
INTERACTION AND MOMENT-LOAD CURVES FOR RAIL STEEL
TEST MEMBERS OF RECTANGULAR GROSS-SECTION.
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FIG. 11 COMPARISON OF EXPERIMENTAL AND THEORETICAL

INTERACTION AND MOMENT-LOAD CURVES FOR ALUMINUM
ALLOY 24S-T4 TEST' MEMBERS OF RECTANGULAR GROSS-

SECTION,
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